Nonlinear Estimation by Particle Filters and Cramer-rao Bound
نویسندگان
چکیده
A solution of the Bayesian recursive relations by the particle filter approach is treated. The stress is laid on the sample size setting as the main user design problem. The Cramér-Rao bound was chosen as a tool for setting the sample size for the three basic types of the state estimation, for filtering, prediction and smoothing. The mean square error matrices of particle filter state estimates for different sample sizes and the CR bounds are compared. Quality of the particle filters and their computational load are illustrated in a numerical example.
منابع مشابه
Improved Cramer-Rao Inequality for Randomly Censored Data
As an application of the improved Cauchy-Schwartz inequality due to Walker (Statist. Probab. Lett. (2017) 122:86-90), we obtain an improved version of the Cramer-Rao inequality for randomly censored data derived by Abdushukurov and Kim (J. Soviet. Math. (1987) pp. 2171-2185). We derive a lower bound of Bhattacharya type for the mean square error of a parametric function based on randomly censor...
متن کاملTarget Tracking with Unknown Maneuvers Using Adaptive Parameter Estimation in Wireless Sensor Networks
Abstract- Tracking a target which is sensed by a collection of randomly deployed, limited-capacity, and short-ranged sensors is a tricky problem and, yet applicable to the empirical world. In this paper, this challenge has been addressed a by introducing a nested algorithm to track a maneuvering target entering the sensor field. In the proposed nested algorithm, different modules are to fulfill...
متن کاملPoint-mass lter and Cramer-Rao bound for Terrain-Aided Navigation
The nonlinear estimation problem in navigation using terrain height variations is studied. The optimal Bayesian solution to the problem is derived. The implementation is grid based, calculating the probability of a set of points on an adaptively dense mesh. The Cramer-Rao bound is derived. Monte Carlo simulations over a commercial map shows that the algorithm , after convergence, reaches the Cr...
متن کاملتخمین جهت منابع با استفاده از زیرفضای کرونکر
This paper proceeds directions of arrival (DOA) estimation by a linear array. These years, some algorithms, e.g. Khatri-Rao approach, Nested array, Dynamic array have been proposed for estimating more DOAs than sensors. These algorithms can merely estimate uncorrelated sources. For Khatri-Rao approach, this is due to the fact that Khatri-Rao product discard the non-diagonal entries of the corre...
متن کاملAnalytical Performance Bounds for Full and Reduced-order Distributed Bayesian Estimation
Motivated by the resource management problem in nonlinear multi-sensor tracking networks, the paper derives online, distributed estimation algorithms for computing the posterior Cramér-Rao lower bound (PCRLB) for full-order and reduced-order distributed Bayesian estimators without requiring a fusion centre and with nodal communications limited to local neighborhoods. For both cases, Riccati-typ...
متن کامل